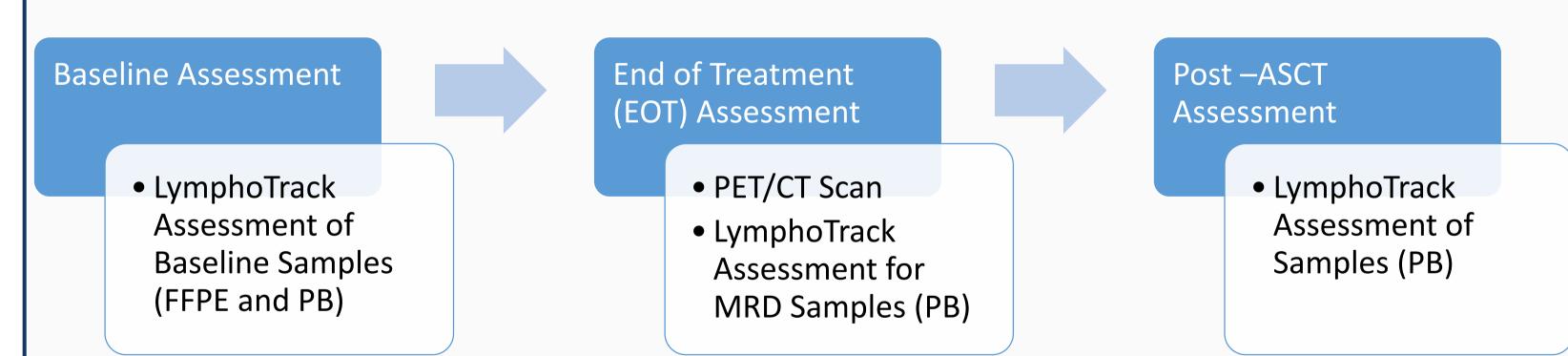
A PROSPECTIVE STUDY OF TCR MEASURABLE RESIDUAL DISEASE IN PERIPHERAL T-CELL LYMPHOMA

& invivoscribe

A. Jacobsen¹, Y. Huang¹, N. Hill¹, K. Elias¹, M. Holman¹, N. Foley², D. Russler-Germain², M. Watkins², E.D. Jacobsen², A. Moskowitz², A.F. Cashen², T.A. Fehniger², B.S. Kahl², A. Ghobadi², B. Reagen², A. Fischer², F. Wan², S.M. Horwitz², N. Mehta-Shah²

¹Invivoscribe, Inc., San Diego, United States; ²Washington University School of Medicine, Saint Louis, United States

Background

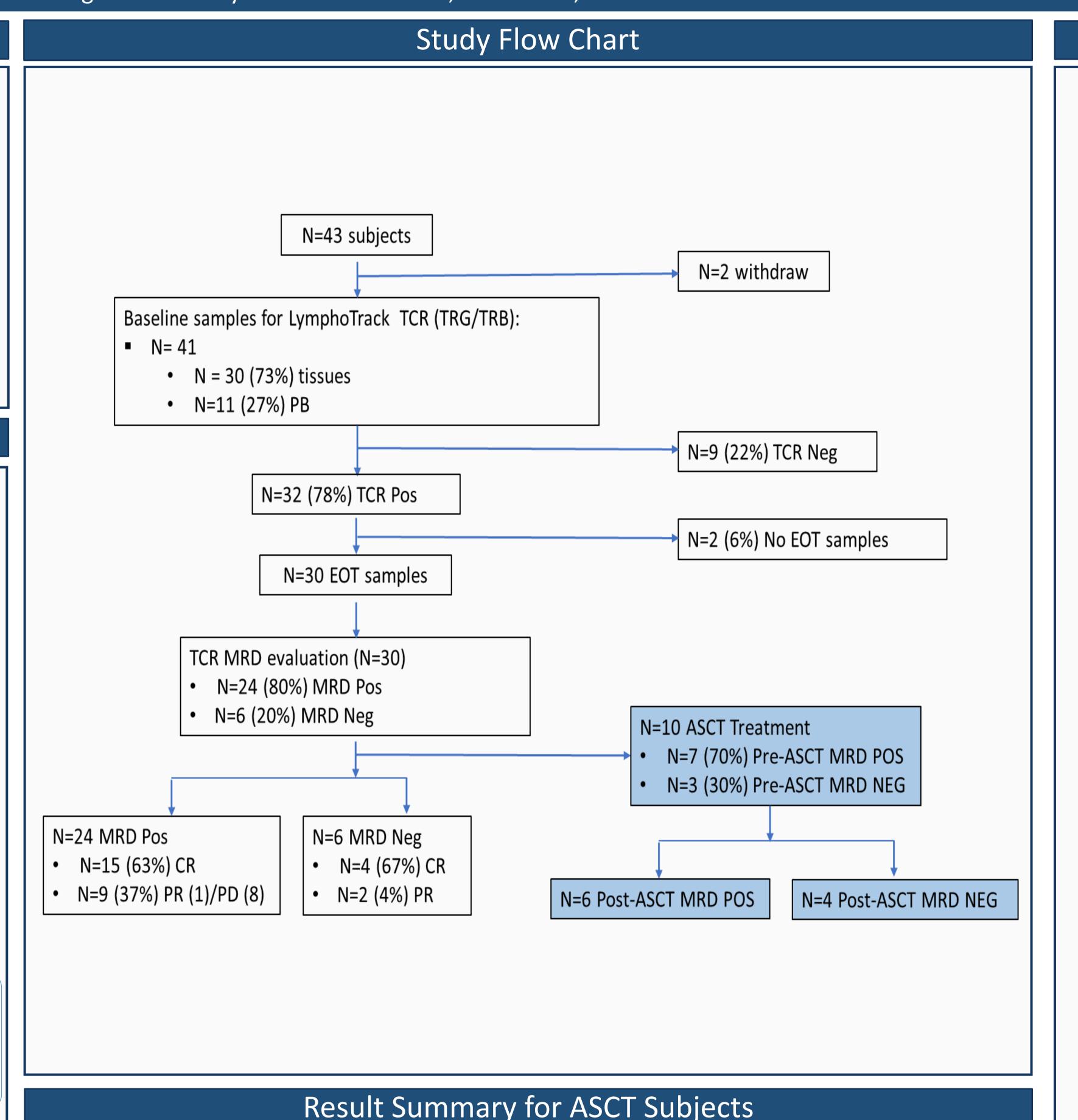

Peripheral T-Cell Lymphoma (PTCL) is an aggressive rare subset (~10-15%) of non-Hodgkin lymphomas. PTCL treatment often starts with anthracycline based chemotherapy and then autologous stem cell transplantation (ASCT) for applicable subjects. PET/CT scans are typically used to monitor disease recurrence after chemotherapy; however, its ability to predict relapse for PTCL is not ideal.

In this Washington University sponsored prospective study, we explored the use a next-generation-sequencing (NGS) based TCR measurable residual disease (MRD) assay as a potential prognostic indicator for PTCL (NCT03297697).

Methods

In this study 43 eligible subjects with previous untreated PTCL (PTCL-NOS, AITL, ALK-ALCL, ALK+ALCL, PTCL-NOS-TFH, and MEITL) were enrolled in this study. LymphoTrack® TCR (*TRG/TRB*) assays, which provide 10⁻⁵ sensitivity, were used to test both baseline samples (either tissue or PB), PB samples from end of chemotherapy (End of Treatment/Pre-ASCT), stem cells from eligible ASCT subjects, and PB samples from post-ASCT subjects. The stem cells were collected according to institutional protocols by apheresis after granulocyte colony stimulating factor (G-CSF) to stimulate the bone marrow production of stem cells for extraction.

NGS assessments were performed at each of the following timepoints:


Schematic depiction of the TRB gene locus:

Schematic depiction of the TRG gene locus:

These PCR amplicons were then purified, quantified, and an equimolar library pool was created for sequencing on the MiSeq $^{\text{TM}}$ sequencer. Clonality from baseline and stem cell samples was determined when the top % reads from this assay were $\geq 2.5\%$ and $\geq 2x$ the background. The identified clonal sequences from the baseline samples were then tracked for MRD assessment in both EOT and post-ASCT samples from the same subjects.

Sample	Age	Dx	Baseline Status	Induction Type	EOT (+/-)	Pre-ASCT PET/CT	Stem Cell	Post-ASCT MRD (+/-)	Relapse Post-ASCT
019MSP	52	ALK- ALCL	TRG+/TRB+	CHOEP	-	PR	TRG-/TRB-	-	No
034MSS	39	AITL	TRG+/TRB+	BV+CHP	-	CR	TRG-/TRB-	_	No
036JSG	69	PTCL NOS	TRG+/TRB+	BV+CHP	-	CR	TRG-/TRB+	_	No
039SAP	71	AITL	TRG+/TRB+	Aza + CHOP	+	CR	n/a	_	No
0111DRK	68	AITL	TRG+/TRB+	CHOEP	+	CR	TRG-/TRB-	+	No
0117NPP	77	AITL	TRG+/TRB+	Aza + CHOP	+	CR	TRG-/TRB-	+	Yes (3 mo)
0118TLL	70	MEITL	TRG+/TRB+	СНОЕР	+	CR	TRG-/TRB+	+	Yes (9 mo)
0124PDR	68	PTCL NOS	TRG+/TRB+	СНОР	+	CR	TRG+/TRB+	+	No
0310JMC	38	AITL	TRG+/TRB+	Aza + CHOP	+	CR	n/a	+	No
0311MZK	67	TFH PTCL	TRB+	Aza + CHOP	+	CR	n/a	+	Yes (29 mo)

Results: Study Analysis for TCR

Conclusions

- ➤ This study demonstrated that RUO LymphoTrack® NGS assays were able to identify clonality from baseline and stem cell samples, and detect MRD in post-treatment (EOT and post ASCT) samples from PTCL subjects in a prospective study.
- > Clonality analyses of stem cells confirmed absence of the matched baseline clonal sequences.
- > All 4 subjects who tested TRG/TRB MRD negative post-ASCT remain in remission at median 32.5 months after ASCT treatment.
- ➤ While the negative predictive value of TCR MRD negative in post-ASCT subjects is promising, further evaluation with a larger sample size is needed.
- Development of in-house and/or IVD assays using NGS technology for PTCL MRD is supported by this research study.

