(f) IdentiClone®

Instructions for Use IdentiClone® TCRB Gene Clonality Assay

CEIVD

For identification of clonal T cell receptor beta chain gene rearrangements.

For In Vitro Diagnostic Use

Storage Conditions: -85°C to -65°C (DNA controls may be separated from assay kits and stored at 2°C to 8°C)

Catalog# REF 92050010 REF 92050020

Products

IdentiClone *TCRB* Gene Clonality Assay – Gel Detection IdentiClone *TCRB* Gene Clonality Assay MegaKit – Gel Detection Quantity

33 Reactions 330 Reactions

Table of Contents

1.	Inte	ENDED USE	3
2.	SUM	IMARY AND EXPLANATION OF THE TEST	3
	2.1.	Background	
	2.2.	Summary	
3.	Prin	NCIPLES OF THE PROCEDURE	4
	3.1.	Polymerase Chain Reaction (PCR)	4
	3.2.	Gel Detection	
4.	REA	GENTS	5
	4.1.	Reagent Components	
	4.2.	Warnings and Precautions	
	4.3.	Storage and Handling	
5.	Inst	TRUMENTS	7
	5.1.	Thermal cycler	
	5.2.	Electrophoresis Unit	
	5.3.	UV Illumination Unit	7
6.	Spec	CIMEN COLLECTION AND PREPARATION	8
	6.1.	Precautions	
	6.2.	Interfering Substances	
	6.3.	Specimen Requirements and Handling	
	6.4.	Sample Preparation	
	6.5.	Sample Storage	
7.	Assa	AY PROCEDURE	9
	7.1.	Reagent Components	9
	7.2.	Materials Required (not provided)	
	7.3.	Reagent Preparation	
	7.4.	Amplification	
	7.5.	Gel Detection – Heteroduplex Analysis	
	7.6. 7.7.	Quality Control Recommended Positive Controls	
0			
8.	INTE	ERPRETATION OF RESULTS	
	8.1.	Analysis	
	8.2.	Sample Interpretation	
9.	Limi	ITATIONS OF PROCEDURE	
10.	Ехрн	ECTED VALUES	
	10.1.	Expected Size of Amplified Products	
	10.2.	Sample Data	
11.	Peri	FORMANCE CHARACTERISTICS	
12.	Тесн	HNICAL AND CUSTOMER SERVICE	
13.	Bibl	LIOGRAPHY	
14.	Symi	BOLS	
15.		AL NOTICE	
-01		Warranty and Liability	
	15.1. 15.2.	Patents and Trademarks	
	15.2.	Notice to Purchaser – EagleTaq DNA Polymerase ONLY	
	-		

1. Intended Use

The IdentiClone *TCRB* Gene Clonality Assay is an in vitro diagnostic product intended for PCR-based detection of clonal T-cell receptor beta chain gene rearrangements in patients with suspect lymphoproliferations. Specifically, the TCRB Gene Clonality Assay can be used to:

- Identify clonality in suspect lymphoproliferations
- Support a differential diagnosis between reactive lesions and T-cell and some immature B-cell malignancies
- Determine lineage involvement in mature lymphoproliferative disorders
- Monitor and evaluate disease recurrence

2. Summary and Explanation of the Test

2.1. Background

Rearrangements of the antigen receptor genes occur during ontogeny in B and T lymphocytes. These gene rearrangements generate products that are unique in length and sequence for each cell. Therefore, polymerase chain reaction (PCR) assays can be used to identify lymphocyte populations derived from a single cell by detecting the unique V-J gene rearrangements present within these antigen receptor loci.¹ This IdentiClone PCR assay employs multiple consensus DNA primers that target conserved genetic regions within the T cell receptor beta chain gene. This test is used to detect the vast majority of clonal T-cell malignancies from DNA. Test products can be analyzed using a variety of detection formats, including gel and capillary electrophoresis.

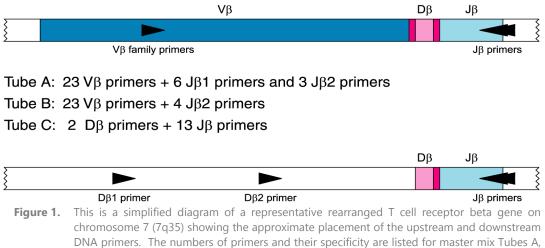
Gene rearrangement analysis can also be performed by Southern Blot (SB)-based techniques. Although SB analysis is very reliable, it is increasingly replaced by PCR techniques because of the greater efficiency and sensitivity of PCR. Moreover, PCR is relatively easy, less labor intensive and requires much lower quantities of high molecular weight DNA than SB tests. In addition, PCR can often be performed on DNA isolated from paraffin-embedded tissue, whereas SB cannot be performed because the DNA is often degraded. Therefore there is a strong need to replace SB analysis with reliable PCR techniques.

2.2. Summary

Invivoscribe's IdentiClone assays represent a new approach to PCR-based clonality testing. These standardized assays were carefully optimized testing positive and negative control samples using multiplex master mixes. Assay development was followed by extensive validation including the testing of more than 400 clinical samples using Revised European/American Lymphoma (REAL) Classification. Testing was done at more than thirty prominent independent testing centers throughout Europe in a collaborative study known as the BIOMED-2 Concerted Action. Results from this BIOMED-2 study appear in *Leukemia*, a leading peer-reviewed journal.²

The gel detection based assays cannot reliably detect clonal populations comprising less than 5% of the total lymphocyte cell population. Always interpret the results of molecular clonality tests in the context of clinical, histological and immunophenotypic data.

This test kit includes four master mixes. *TCRB* Tubes A and B target framework regions within the variable region and the joining region of the TCR beta chain locus. *TCRB* Tube C targets the diversity and joining regions. Lastly, the Specimen Control Size Ladder master mix, targets multiple genes and generates a series of amplicons of approximately 100, 200, 300, 400, and 600 base pairs to ensure that the quality and quantity of input DNA is adequate to yield a valid result. A single thermal cycler program and similar detection methodologies are used with all of our Gene Clonality Assays. This improves consistency and facilitates cross training on a broad range of different assays.


This assay is based on the EuroClonality/BIOMED-2 Concerted Action BMH4-CT98-3936.

3. Principles of the Procedure

3.1. Polymerase Chain Reaction (PCR)

PCR assays are routinely used for the identification of clonal T-cell populations. These tests amplify the DNA between primers that target the conserved variable (V) regions and the conserved joining (J) regions (*TCRB* Tube A & B), as well as the diversity (D) and joining regions (*TCRB* Tube C). These conserved regions lie on either side of an area within the V-J region where programmed genetic rearrangements occur during maturation of all B and T lymphocytes. The antigen receptor genes that undergo rearrangement are the immunoglobulin heavy chain and light chains in B-cells and the T cell receptor genes in T-cells. Each B- and T-cell has a single productive V-J rearrangement that is unique in both length and sequence. Therefore, when DNA from a normal or polyclonal population is amplified using DNA primers that flank the V-J region, a bell-shaped curve (Gaussian distribution) of amplicon products within an expected size range is produced. On a gel, this distribution of products is seen as a smear. This Gaussian distribution reflects the heterogeneous population of V-J rearrangements. (In certain cases, where lymphocyte DNA is not present, no product is seen) For DNA from samples containing a clonal population, the yield is one or two prominent amplified products (amplicons) within a diminished polyclonal background.

DNA primers. The num B and C.

Since the antigen receptor genes are polymorphic (consisting of a heterogeneous population of related DNA sequences), it is difficult to employ a single set of DNA primer sequences to target all of the conserved flanking regions around the V-J rearrangement. N-region diversity and somatic mutation further scramble the DNA sequences in these regions. Therefore, multiplex master mixes, which target several FR regions, are required to identify the majority of clonal rearrangements. As indicated, clonal rearrangements are identified as prominent, single-sized products within the background of different-sized amplicon products that form a Gaussian distribution around a statistically favored, average-sized rearrangement.

3.2. Gel Detection

Gel electrophoresis, such as agarose gel electrophoresis or non-denaturing polyacrylamide gel electrophoresisis (PAGE), is commonly used to resolve the different amplicon products based on their size, charge and conformation. Since DNA is negatively charged, when an electrical potential (voltage) is applied across the gel containing PCR products, the electrical field causes the amplicons to migrate through the gel. Smaller DNA fragments are able to easily migrate through the gel matrix, whereas larger DNA fragments migrate more slowly. This causes a separation of the amplicon products based on size. Ethidium bromide or other DNA intercalating dyes can then be used to stain and detect these products in the gel.

A heteroduplex analysis can also be performed and run on a polyacrylamide gel to differentiate clonal and non-clonal PCR products. A heteroduplex analysis involves denaturing the PCR products at a high temperature, then quickly re-annealing the DNA strands by suddenly reducing the temperature. This causes a large portion of DNA strands to incorrectly bind to other non-homologous strands creating loops in the DNA. These loops cause a significant reduction in the ability of the DNA to migrate through a polyacrylamide gel. However, if the majority of the PCR products are clonal, when a heteroduplex analysis is performed, most of these PCR products will correctly re-anneal with a homologous strand. These PCR products will run normally through the polyacrylamide gel. Therefore, in a clonal sample with a polyclonal background, a heteroduplex analysis will cause most of the polyclonal product to run much slower through the polyacrylamide gel, thereby increasing their separation and the ability to identify the clonal band(s).

4. Reagents

4.1. Reagent Components

Table 1. Available Kits

Número de Catálogo	Producto	Cantidad
REF 92050010	IdentiClone TCRB Gene Clonality Assay – Gel Detection	33 Reactions
REF 92050020	IdentiClone TCRB Gene Clonality Assay MegaKit – Gel Detection	330 Reactions

Table 2. Reagent Components

Reagent	Catalog #	Reagent Components (active ingredients)	Unit Quantity	92050010 # of Units	92050020 # of Units	Storage Temp.
	22050010CE	TCRB Tube A - Unlabeled Multiple oligonucleotides targeting the V β + J β 1 + J β 2 regions of the T cell receptor beta gene in a buffered salt solution.	1500 µL	1	10	⊮65°C
Master Mixes	22050020CE	TCRB Tube B - Unlabeled Multiple oligonucleotides targeting the Vβ + Jβ2 regions of the T cell receptor beta gene in a buffered salt solution.	1500 µL	1	10	
	22050030CE	TCRB Tube C - Unlabeled Multiple oligonucleotides targeting the D β + J β 1 + J β 2 regions of the T cell receptor beta gene in a buffered salt solution.	1500 µL	1	10	-85°C-⁄
Template Amplification Control Master Mix	20960020	Specimen Control Size Ladder - Unlabeled Multiple oligonucleotides targeting housekeeping genes.	1500 μL	1	10	
	40880490	IVS-0009 Clonal Control DNA 200 μg/mL of DNA in 1/10 th TE solution	100 µL	1	5	
Positive Control DNAs	40880190	IVS-0004 Clonal Control DNA 200 μg/mL of DNA in 1/10 th TE solution	100 µL	1	5	2°C 8°C
	40881210	IVS-0021 Clonal Control DNA 200 μg/mL of DNA in 1/10 th TE solution	100 µL	1	5	or -85°C
Negative (Normal) Control DNA	40920010	IVS-0000 Polycional Control DNA 200 μg/mL of DNA in 1/10 th TE solution	100 µL	1	5	

Note: There are no preservatives used in the manufacture of this kit.

4.2. Warnings and Precautions

• **IVD** This product is for *In Vitro* Diagnostic Use

- Use the assay kit as a system. Do not substitute other manufacturer's reagents. Dilution, reducing amplification reaction
 volumes or other deviation in this protocol may affect the performance of this test and/or nullify any limited sublicense
 that comes with the purchase of this testing kit.
- Materials are stable until the labeled expiration date when stored and handled as directed. Do not use kits beyond their expiration date.
- Close adherence to the protocol will assure optimal performance and reproducibility. Ensure correct thermal cycler program is used, as other programs may provide inaccurate/faulty data, such as false positive and false negative results.
- Laboratory personnel are reminded to wear appropriate personal protective equipment and follow good laboratory practices and universal precautions when working with specimens. Handle specimens in approved biological safety containment facilities and open only in certified biological safety cabinets. Use molecular biology grade water for the preparation of specimen DNA.
- Do not mix or combine reagents from kits with different lot numbers.
- Due to the analytical sensitivity of this test, use extreme care to avoid the contamination of reagents or amplification mixtures with samples, controls or amplified materials. Closely monitor all reagents for signs of contamination (e.g., negative controls giving positive signals). Discard reagents suspected of contamination.
- To minimize contamination, wear clean gloves when handling samples and reagents and routinely clean work areas and pipettes prior to doing PCR.
- Autoclaving does not eliminate DNA contamination. Follow uni-directional work flow between separate work areas in the PCR laboratory: begin with Master Mix Preparation, move to the Specimen Preparation, then to the Amplification and finally to Detection. Do not bring amplified DNA into the areas designated for master mix or specimen preparation.
- Dedicate all pipettes, pipette tips and any equipment used in a particular to that area of the laboratory.
- Use sterile, disposable plastic ware whenever possible to avoid RNase, DNase or cross-contamination.

4.3. Storage and Handling

- For any duration other than immediate use, store assay kits at -85°C to -65°C.
- The optimum storage temperature for DNA controls is 2°C to 8°C, but DNA controls can be stored at -85°C to -65°C.
- All reagents and controls must be thawed and vortexed or mixed thoroughly prior to use to ensure that they are resuspended completely.
- Materials are stable until the labeled expiration date when stored and handled as directed. Do not use kits beyond their expiration date.
- Due to high salt concentrations, PCR master mixes are sensitive to freeze/thaw cycles. Aliquot master mixes into sterile o-ring screw-cap tubes if necessary.

5. Instruments

5.1. Thermal cycler

- Use or Function: Amplification of DNA samples
- Suggested Instrument: Veriti[™] thermal cycler or equivalent
- Performance characteristics and specification:
 - Minimum Thermal Range: 15°C to 96°C
 - Minimum Ramping Speed: 0.8°C/sec
- Follow manufacturer's installation, operation, calibration and maintenance procedures.
- See section 7.4 *Amplification* for thermal cycler program.

5.2. Electrophoresis Unit

- Use or Function: DNA fragment separation
- Performance Characteristics and Specification:
 - Capable of running at 35V to 135V for extended times
- Follow manufacturer's installation, operation, calibration and maintenance procedures.

5.3. UV Illumination Unit

- Use or Function: DNA detection
- Performance Characteristics and Specification:
 - Capable of emitting light at a wavelength of ~302 nm
- Follow manufacturer's installation, operation, calibration and maintenance procedures.

6. Specimen Collection and Preparation

6.1. Precautions

Biological specimens from humans may contain potentially infectious materials. Handle all specimens in accordance with the OSHA Standard on Bloodborne Pathogens or Biosafety Level 2.

6.2. Interfering Substances

The following substances are known to interfere with PCR:

- Divalent cation chelators
- Low retention pipette tips
- EDTA (not significant at low concentrations)
- Heparin

6.3. Specimen Requirements and Handling

This assay tests genomic DNA from the following sources:

- 5 cc of peripheral blood, bone marrow biopsy or bone marrow aspirate anti-coagulated with heparin or EDTA (stored at 2°C to 8°C and shipped at ambient temperature)
- Minimum 5 mm cube of tissue (stored and shipped frozen; or stored and shipped in RPMI 1640 at ambient temperature or on ice)
- 2 μg of genomic DNA (stored at 2°C to 8°C and shipped at ambient temperature)
- Formalin-fixed paraffin embedded tissue or slides (stored and shipped at ambient temperature)

6.4. Sample Preparation

Extract the genomic DNA from patient specimens as soon as possible. Resuspend DNA to a final concentration of 100 μ g to 400 μ g per mL in 1/10th TE (1 mM Tris-HCl, pH 8.0; 0.1 mM EDTA) or in molecular biology grade or USP water. <u>This is a robust assay system</u>. A wide range of DNA concentrations will generate a valid result. Therefore, quantifying and adjusting DNA concentrations is generally not necessary. Testing sample DNA with the Specimen Control Size Ladder master mix will ensure that DNA of sufficient quality and quantity was present to yield a valid result.

6.5. Sample Storage

Store genomic DNA at 2°C to 8°C or at -85°C to -65°C until use.

7. Assay Procedure

7.1. Reagent Components

Table 3. Materials Provided

	Catalog #	Description
REF	22050010CE	<i>TCRB</i> Tube A – Unlabeled
REF	22050020CE	<i>TCRB</i> Tube B – Unlabeled
REF	22050030CE	<i>TCRB</i> Tube C – Unlabeled
REF	20960020	Specimen Control Size Ladder – Unlabeled
REF	40880490	IVS-0009 Clonal Control DNA
REF	40881210	IVS-0021 Clonal Control DNA
REF	40880190	IVS-0004 Clonal Control DNA
REF	40920010	IVS-0000 Polyclonal Control DNA

7.2. Materials Required (not provided)

Table 4. Materials Required (not provided)

Reagent/Material	Recommended Reagents/Materials and Suppliers	Catalog #	Notes
DNA Polymerase	Roche: • EagleTaq DNA Polymerase Invivoscribe: • EagleTaq DNA Polymerase ¹ or equivalent	05206944190 60970100	N/A
Glass Distilled De- ionized Molecular Biology Grade or USP Water	N/A	N/A	DNase / RNase free
Calibrated Pipettes	Rainin: • P-2, P-20, P-200, and P-1000 pipettes • Or SL-2, SL-20, SL-200, and SL-1000 pipettes	N/A	Must be able to accurately measure volumes between 1 µL and 1000 µL.
Thermal cycler	 Thermo Fisher Scientific: Veriti Dx Thermal Cycler Bio-Rad: MJ Research PTC-100 or PTC-200, PTC-220, PTC-240 Perkin-Elmer PE 9600 or PE 9700 	N/A	N/A
Vortex Mixer	N/A	N/A	N/A
PCR plates or tubes	N/A	N/A	Sterile
Filter barrier pipette tips	N/A	N/A	Sterile, RNase/DNase/Pyrogen- free
Microcentrifuge tubes	N/A	N/A	Sterile
Gel Electrophoresis Unit	N/A	N/A	For polyacrylamide gels
Ethidium Bromide	Thermo Fisher Scientific: ● UltraPure™ 10 mg/mL Ethidium Bromide	15585-011	N/A

Table 4. Materials Required (not provided)

Reagent/Material	Recommended Reagents/Materials and Suppliers	Catalog #	Notes
6% Polyacrylamide Gels	Thermo Fisher Scientific: • Novex [®] TBE Gels (6%, 12 well)	EC62652Box	N/A
TBE Running Buffer	Thermo Fisher Scientific: • Novex TBE Running Buffer (5X)	LC6675	Dilute 1:5 prior to use.
Gel Loading Buffer	 Thermo Fisher Scientific: 10X BlueJuice[™] Gel Loading Buffer Novex Hi-Density TBE Sample Buffer (5X) 	10816-015 LC6678	N/A
100 bp DNA Ladder	Thermo Fisher Scientific: • TrackIt™ 100 bp DNA Ladder	10488-058	N/A

¹Note: This product is for sale and use in the European Economic Area only. It is not to be resold or transferred to another party. See also Legal Notice in section 15.

7.3. Reagent Preparation

- Unknown samples can be tested using the Specimen Control Size Ladder master mix to ensure that no inhibitors of amplification are present and there is DNA of sufficient quality and quantity to generate a valid result.
- Singlicate test results are valid; however, we recommend duplicate testing when possible. If duplicate testing provides inconsistent results, re-testing or re-evaluation of the sample is necessary.
- Test **positive**, **negative** and **no template** controls for each master mix.
- Batch multiple samples in a run to avoid running out of the negative control (IVS-0000 Polyclonal Control DNA). If batching samples is not practical in your laboratory setting, IVS-0000 Polyclonal Control DNA is also available for purchase separately.
- 7.3.1. Using gloved hands, remove the master mixes from the freezer. Allow the tubes to thaw completely; then gently vortex to mix.
- 7.3.2. In containment hood or dead air box remove an appropriate aliquot from each master mix to individual clean, sterile microcentrifuge tubes.
 - Aliquot volumes are 45 μL for each reaction.
 - Add an additional reaction for every 15 reactions to correct for pipetting errors. Thus, for each master mix (except for the Specimen Control Size Ladder), the number of reactions (n) is:

n = 2 × # of samples	(run each sample in duplicate)
+ 1	positive control DNA (See Table 6)
+ 1	negative control DNA (IVS-0000 Polyclonal Control DNA)
+ 1	no template control (water)
+ 1	to correct for pipetting errors
n = 2 × # of samples + 4	Total
1	ot volume for each master mix is $\mathbf{n} \times 45 \ \mu \mathbf{L}$. ol Size Ladder master mix, the number of reactions (m) is:
m = # of samples	(run each sample in singlicate)
+ 1	negative control DNA (IVS-0000 Polyclonal Control DNA)
+ 1	

+ 1 to correct for pipetting errors

Total

- m = # of samples + 3
- Therefore the total aliquot volume for the Specimen Control Size Ladder master mix is $m \times 45 \mu L$.

- 7.3.3. For TCRB Tubes A and B: Add 2.25 U (or 0.45 µL @5 U/µL) of Taq DNA polymerase per reaction to each master mix.
 - The total Tag DNA polymerase added to each master mix is $n \times 0.45 \mu L$.
 - Gently vortex to mix.
- 7.3.4. For TCRB Tube C and Specimen Control Size Ladder: Add 1.25 U (or 0.25 µL @5 U/µL) of Taq DNA polymerase per reaction.
 - The total Taq DNA polymerase added to each master mix is $\mathbf{n} \times 0.25 \,\mu L$ for the *TCRB* Tube C master mix and $\mathbf{m} \times 0.25 \,\mu \mathbf{L}$ for the Specimen Control Size Ladder master mix.
 - Gently vortex to mix.
- 7.3.5. For each reaction, aliquot 45 μ L of the appropriate master mix + DNA polymerase solution into individual wells in a PCR plate or tube.
- 7.3.6. Add 5 µL of appropriate template (sample DNA, positive control DNA, negative control DNA or water) to the individual wells containing the respective master mix solutions. Pipette up and down several times to mix.
- 7.3.7. Cap or cover the PCR plate.
 - Samples are now ready to be amplified on a thermal cycler.
- 7.3.8. If amplification cannot be performed immediately following reagent preparation, the PCR plate or tubes can be stored at 2°C to 8°C for up to 24 hours.

Quick Guide For each master mix and **n** reactions, mix: n × 45 μL Master Mix $n \times 0.25~\mu L$ or 0.45 μL^* Taq DNA polymerase Vortex gently to mix. Aliquot 45 µL of master mix + DNA polymerase solution into each reaction well. Add 5 µL of appropriate Template to each well. Total reaction volume = 50 uL

Use 0.45 µL of Tag DNA polymerase for TCRB Tubes A and B and 0.25 µL of Tag DNA polymerase for TCRB *Note: Tube C and Specimen Control Size Ladder.

7.4. Amplification

- 7.4.1. Amplify the samples using the following PCR program:
 - Use the calculated option for temperature measurement with the BioRad MJ Research PTC thermal cyclers.

Table 5. Thermal cycling conditions			
Step	Temperature	Duration	Cycle
1	95°C	7 minutes	1
2	95°C	45 seconds	
3	60°C	45 seconds	35
4	72°C	90 seconds	
5	72°C	10 minutes	1
6	15°C	ω	1

7.4.2. Remove the amplification plate or tubes from the thermal cycler.

> Although amplified DNA is stable at room temperature for extended periods of time, store PCR products at 2°C to 8°C until detection. Detection must be within 30 days of amplification.

7.5. Gel Detection – Heteroduplex Analysis

- Note: Do not heteroduplex the PCR products from the Specimen Control Size Ladder master mix. Skip steps 7.5.1 7.5.3 and proceed with step 7.5.4.
 - 7.5.1. Denature 20 µL of PCR products at 94°C for 5 minutes.
 - 7.5.2. Quick chill to re-anneal PCR products at 4°C (on an ice water bath) for 60 minutes.
 - 7.5.3. Assemble the electrophoresis unit using a non-denaturing, 6% polyacrylamide TBE gel and 1X TBE running buffer.
 - 7.5.4. Mix 20 μL of each sample with 5 μL of ice-cold non-denaturing 5X bromophenol blue loading buffer.
 - 7.5.5. Load all 20 μ L of the mixture into individual wells of the gel.
 - 7.5.6. Run gel at 110V for 2-3 hours or 40-50V overnight. Voltage and electrophoresis time depend on the PCR amplicon size and polyacrylamide gel thickness. Voltage and run time can be adapted accordingly.
 - 7.5.7. Stain gels in 0.5 μg/mL ethidium bromide (in water or 0.5X TBE Buffer) for 5-10 minutes.
 - 7.5.8. De-stain gels in water for 5-10 minutes. Repeat with fresh water.
 - 7.5.9. Place gel over UV illuminator to visualize bands.
 - 7.5.10. Photograph and interpret resulting data. (see sections 8 Interpretation of Results and 10 Expected Values)

7.6. Quality Control

Positive and negative (or normal) controls are furnished with the kit and are run in singlicate each time the assay is performed to ensure proper performance of the assay. In addition, a no template control (*e.g.* water) is also included to test for contamination of the master mix or cross-contamination of PCR reactions due to improper sterile technique. A buffer control may also be added to ensure that no contamination of the buffer used to resuspend the samples has occurred. The values for the positive controls are provided under section 10.1 *Expected Size of Amplified Products*. Additional controls and sensitivity controls (dilutions of positive controls into our negative control) are available from Invivoscribe.

7.7. Recommended Positive Controls

The amplicon sizes listed were determined using an ABI platform.

Master Mix	Target	Control DNA	Catalog #	Product Size (bp)
<i>TCRB</i> Tube A	Vβ + Jβ1/2	Valid Size Range IVS-0009 Clonal Control DNA	 40880490	240 - 285 264
<i>TCRB</i> Tube B	Vβ + Jβ2	Valid Size Range IVS-0004 Clonal Control DNA IVS-0021 Clonal Control DNA	40880190 40881210	240 - 285 253 267
<i>TCRB</i> Tube C	Dβ + Jβ1/2	Valid Size Range IVS-0009 Clonal Control DNA	 40880490	170 - 210 (Dβ2), 285 - 325 (Dβ1) 309
Specimen Control Size Ladder	Multiple Genes	Valid Size Range IVS-0000 Polyclonal Control DNA	 40920010	100, 200, 300, 400, 600 ^a 100, 200, 300, 400, 600 ^a

 Table 6.
 Recommended Positive Controls

*Note: Because smaller PCR fragments are preferentially amplified, it is not unusual for the 600 bp fragment to have a diminished signal or to be missing entirely.

8. Interpretation of Results

Although positive results are highly suggestive of malignancy, interpret both positive and negative results in the context of all clinical information and laboratory test results. The size range for each master mix has been determined by testing positive and negative control samples. For accurate and meaningful interpretation it is important to ignore peaks that occur outside of the valid size range for each master mix.

8.1. Analysis

- Samples that fail to amplify following repeat testing are reported as:
 "A result cannot be reported on this specimen because there was DNA of insufficient quantity or quality for analysis".
- Repeat samples that test negative if the positive control reaction failed.
- If samples run in duplicate yield differing results, the samples must be re-tested and/or re-evaluated for sample switching.
- All assay controls must be examined prior to interpretation of sample results.

 Table 7. The following describes the analysis of each of the controls and the decisions necessary based upon the results.

Type of Control	Expected Result	Aberrant Result
No Template Control	No amplification present, continue with analysis	Amplification present, Repeat the assay.
Polyclonal Control	Product size is consistent with expected size listed in section 10.1 <i>Expected Size of Amplified</i> <i>Products.</i> No clonal rearrangements are present. Continue with analysis.	Clonal rearrangements are present. Repeat the assay
Positive Control (This can also be an extraction control if positive control material is taken through extraction processes)	Product size is consistent with expected size listed in section 10.1 <i>Expected Size of Amplified</i> <i>Products.</i> Continue with analysis.	Repeat the assay if product sizes are not in the expected size range.
Specimen Control Size Ladder (This amplification control is <u>essential</u> for samples of unknown quantity and quality.)	If all of the 100, 200, 300, 400, and 600 bp peaks are seen, continue with analysis. Because smaller PCR fragments are preferentially amplified, it is not unusual for the 600 bp fragment to have a diminished signal or to be missing entirely. Continue with analysis.	If no bands are seen, repeat the assay unless specimen tests positive. If only 1, 2, or 3 bands are seen, re-evaluate sample for DNA degradation <u>unless</u> <u>specimen tests positive</u> .

8.2. Sample Interpretation

Given that the controls produce expected results, interpret the clinical samples as follows:

• One or two prominent positive bands^a within the valid size range are reported as:

"Positive for the detection of clonal T cell receptor beta gene rearrangement(s) is consistent with the presence of a clonal cell population. In the context of overall diagnostic criteria, clonal cell populations can indicate the presence of hematologic malignancy."

• An absence of positive bands^a within the valid size range is reported as:

"Negative for the detection of clonal T cell receptor beta gene rearrangement(s)."

^aNote: Criteria for defining a positive band are as follows:

 Products generated from samples that fall within the valid size range and produce a discrete band(s) distinct from any background smear are consistent with a positive band.

9. Limitations of Procedure

- This assay does not identify 100% of clonal cell populations.
- This assay cannot reliably detect less than five positive cells per 100 normal cells.
- Always interpret the results of molecular clonality tests in the context of clinical, histological and immunophenotypic data.
 PCR-based assays are subject to interference by degradation of DNA or to inhibition of PCR due to EDTA, heparin and
- PCK-based assays are subject to interference by degradation of DNA of to initiofition of PCK due to EDTA, neparin and other agents.

10. Expected Values

10.1. Expected Size of Amplified Products

The amplicon sizes listed were determined using an ABI platform.

Master Mix	Target	Control DNA	Catalog #	Product Size (bp)
<i>TCRB</i> Tube A	Vβ + Jβ1/2	Valid Size Range IVS-0000 Polyclonal Control DNA IVS-0009 Clonal Control DNA IVS-0004 Clonal Control DNA	 40920010 40880490 40880190	240 - 285 240 - 285, 271ª 264 295
<i>TCRB</i> Tube B	Vβ + Jβ2	Valid Size Range IVS-0000 Polyclonal Control DNA IVS-0009 Clonal Control DNA IVS-0004 Clonal Control DNA IVS-0021 Clonal Control DNA	40920010 40880490 40880190 40881210	240 - 285 240 - 285, 221 ^b 253 267
<i>TCRB</i> Tube C	Dβ + Jβ1/2	Valid Size Range IVS-0000 Polyclonal Control DNA IVS-0009 Clonal Control DNA IVS-0004 Clonal Control DNA	 40920010 40880490 40880190	170 - 210 (Dβ2), 285 - 325 (Dβ1) 128 ^b , 170 - 210, 285 - 325, 337 ^b 309 295
Specimen Control Size Ladder	Multiple Genes	Valid Size Range IVS-0000 Polyclonal Control DNA	 40920010	100, 200, 300, 400, 600 ° 100, 200, 300, 400, 600°

Table 8. Expected Size of Amplified Products

*Note: The 271 bp band is particularly seen in samples with low numbers of contaminating lymphoid cells.

^bNote: Under sub-optimal conditions nonspecific products of 221 bp (in Tube B) and 128 and 337 bp (in Tube C) can be detected. If present, these bands will normally be faint.

Note: Because smaller PCR fragments are preferentially amplified, it is not unusual for the 600 bp fragment to have a diminished signal or to be missing entirely.

10.2. Sample Data

The data shown in Figures 2 - 4 were generated using the master mixes indicated. Amplified products were heteroduplexed and run on a 6% polyacrylamide gel.

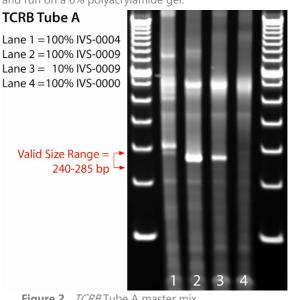
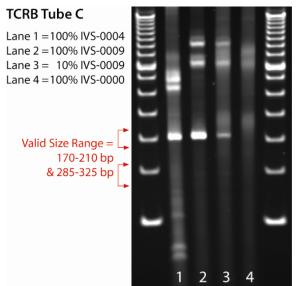



Figure 2. TCRB Tube A master mix

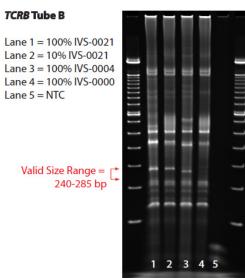


Figure 3. TCRB Tube B master mix

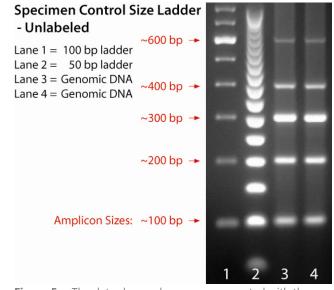


Figure 5. The data shown above were generated with the Specimen Control Size Ladder master mix. Amplified products were run on a 2% agarose gel.

11. Performance Characteristics

This IdentiClone *TCRB* Gene Clonality PCR test is a rapid and reliable procedure that is far more sensitive than Southern Blot (SB) analysis in detecting clonality in suspect lymphoproliferations. The final clinico-histopathological diagnosis correlates well with PCR results in a higher number of patients in comparison with SB results. This is evidenced by two notable papers, one published in 2003 in *Leukemia* by van Dongen *et al.* and one published in 2005 in the *Journal of Molecular Diagnostics (JMD)* by Sandberg *et al.*

Table 9. Comparison of PCR and Southern Blot detection
--

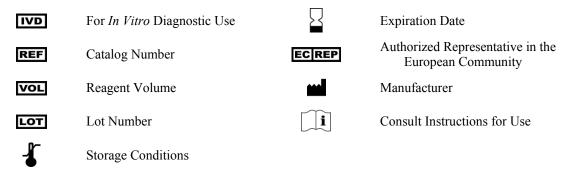
PCR/SB concordance (<i>Leukemia</i>): ²		PCR/SB concordance (<i>JMD</i>): ³	
IGH.	93% sensitivity/ 92% specificity	IGH + IGK:	85% sensitivity
IGK:	90% sensitivity/ 90% specificity	10H + 10K.	
IGL:	86% sensitivity/ 92% specificity		
TCRB:	86% sensitivity/ 98% specificity	TCRB.	85% sensitivity
TCRG:	89% sensitivity/ 94% specificity		
TCRD.	83% sensitivity/ 95% specificity		

	PCR/SB concordance:	PCR sensitivity:	SB sensitivity
IGH + IGK:	85%	98%	39%
TCRB.	85%	96%	35%

The study by Sandberg *et al.* was an independent study of 300 patient samples from a variety of sample types. In cases where both PCR and SB analyses were done and results could be correlated with histopathology and a final diagnosis, the diagnostic accuracy of selected IdentiClone tests was determined to be at least 96%. This was far more accurate than SB analysis, which in this study missed 23 clear cases of malignancy and 7 probable malignancies. There were no clear false positive results generated using the IdentiClone tests and there was a high level of precision.³ In addition, a clear benefit of this assay was that clonal results generated allowed for subsequent detection of patient- and tumor-specific gene rearrangements for minimal residual disease detection.

12. Technical and Customer Service

Technical and Customer Service Representatives are available Monday through Friday to answer phone, e-mail or website inquiries.


Contact Information		Authorized Representative and EU Technical Assistance	
Invivoscribe, Inc		ECREP Invivoscribe, SARL	
10222 Barnes Canyon Road, Bldg. 1		Le Forum – Bât B	
San Diego, California 92121-2711		515 Avenue de la Tramontane	
USA		ZI Athélia IV	
		13600 La Ciotat, Fr	ance
Phone:	+1 858 224-6600	Phone:	+33 (0)4 42 01 78 10
Fax:	+1 858 224-6601	Fax:	+33 (0)4 88 56 22 89
Technical Service:	support@invivoscribe.com	Technical Service:	support@invivoscribe.com
Customer Service	sales@invivoscribe.com	Customer Service	sales-eu@invivoscribe.com
Website:	www.invivoscribe.com	Website:	www.invivoscribe.com
Business Hours:	7:00AM - 5:00PM PST/PDT	Business Hours:	9:00AM - 5:00PM CET/CEST

13. Bibliography

- 1. Miller, JE, Wilson, SS, Jaye, DJ, Kronenberg, M. (1999). An automated semiquantitative B and T cell clonality assay. *Molecular Diagnostics* 4, 101-117.
- Van Dongen, JJM et al. (2003). Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 17, 2257-2317.
- 3. Sandberg, Y et *al.* (2005). BIOMED-2 multiplex immunoglobulin/T-cell receptor polymerase chain reaction protocols can reliably replace Southern Blot analysis in routine clonality diagnostics. *J. Molecular Diagnostic* 7, 495-503.
- 4. van Krieken, JHJM *et al.* (2007). Improved reliability of lymphoma diagnostics via PCR-based clonality testing: Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. *Leukemia* 21, 201-206.

14. Symbols

The following symbols are now used in labeling for Invivoscribe diagnostic products.

15. Legal Notice

15.1. Warranty and Liability

Invivoscribe, Inc. (Invivoscribe®) is committed to providing the highest quality products. Invivoscribe® warrants that the products meet or exceed the performance standards described in the Instructions For Use, as to products with such an insert. If a product is covered by product specifications and does not perform as specified, our policy is to replace the product or credit the full purchase price. No other warranties of any kind, expressed or implied, are provided by Invivoscribe®. Invivoscribe® liability shall not exceed the purchase price of the product. Invivoscribe shall have no liability for direct, indirect, consequential or incidental damages arising from the use, results of use, or inability to use its products; product efficacy under purchaser controlled conditions in purchaser's laboratory must be established and continually monitored through purchaser defined and controlled processes including but not limited to testing of positive, negative, and blank controls every time a sample is tested. Ordering, acceptance, and use of product constitutes purchaser acceptance of sole responsibility for assuring product efficacy and purchaser agreement to the limitation of liability set forth in this paragraph.

This product is an *in vitro* diagnostic product is not available for sale or use within North America.

15.2. Patents and Trademarks

This product is covered by one or more of the following: European Patent Number 1549764, European Patent Number 2418287, European Patent Number 2460889, Japanese Patent Number 4708029, United States Patent 8859748, and related pending and future applications. All of these patents and applications are licensed exclusively to Invivoscribe[®]. Additional patents licensed to Invivoscribe covering some of these products apply elsewhere. Many of these products require nucleic acid amplification methods such as Polymerase Chain Reaction (PCR). No license under these patents to use amplification processes or enzymes is conveyed expressly or by implication to the purchaser by the purchase of this product.

Identiclone® is a registered trademark of Invivoscribe®

©2020 Invivoscribe, Inc. All rights reserved. The trademarks mentioned herein are the property of Invivoscribe, Inc. and/or its affiliates or (as to the trademarks of others used herein) their respective owners.

15.3. Notice to Purchaser – EagleTaq DNA Polymerase ONLY

This product is for sale for research use in the European Economic Area (EEA) only. It is not to be resold or transferred to another party. Use of this product is covered by US Patent No. 6,127,155 and corresponding patent claims outside the US. This purchaser of this product may use this amount of product only for the purchaser's own internal research. No right under any other patent claim and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Human and veterinary diagnostic uses under Roche patent claims require a separate license from Roche. All uses other than internal research and human and veterinary diagnostic uses under Roche patent claims require a separate license from Roche. All uses other than internal research and human and veterinary diagnostic uses under Roche patent claims require a separate license from Roche. All uses other than internal research and human and veterinary diagnostic uses under Roche patent claims require a separate license from Roche. All uses other than internal research and human and veterinary diagnostic uses under Roche patent claims require a separate license from Thermo Fisher Scientific. By using this product, you acknowledge your agreement to the above. Further information on purchasing licenses from Roche may be obtained by contacting the Licensing Department of Roche Molecular Systems, Inc., 4300 Hacienda Drive, Pleasanton, California 94588, USA or Roche Diagnostics GmbH, Sandhofer Strasse 116, 68305 Mannheim, Germany. Further information on purchasing licenses from Thermo Fisher Scientific may be obtained by contacting the Licensing Department of Thermo Fisher Scientific, 5791 Van Allen Way, Carlsbad, California 92008, USA