
MyHEME	DNA	baits	contain	 targets	 to	detect	 structural	variants	 that	occur	within	 the	breakpoint	hotspot	 in	
KMT2A	and	in	small	introns	adjacent	to	targeted	exons.		
•  The	6	cell	lines	in	the	contrived	dilu;on	samples	contain	the	following	detectable	transloca;ons:	
•  t(9;22)(BCR;ABL1)	–	b3a2	(e14a2)  • t(9;22)(NUP214;XKR3)	
•  These	cell	lines	were	sequenced	8	;mes	at:	2.5%,	3.75%,	5%,	and	10%	allelic	frequencies	

Table	2:	DNA	detec;on	of	transloca;ons	

MyHEME	RNA	baits	contain	targets	to	detect	gene	fusions	that	occur	within	any	of	371	genes.	
•  We	sequenced	6	different	cell	lines	containing	a	known	gene	fusion:	
•  t(1;19)(TCF3;PBX) 	 	• t(9;22)(BCR;ABL1)	–	b2a2	(e13a2)	
•  t(9;22)(BCR;ABL1)	–	b3a2	(e14a2) 	• t(8;21)(RUNX1;RUNX1T1)	
•  t(15;17)(PML;RARA)	–	“L-form” 	• inv(16)(CBFB;MYH11)	
•  We	use	3	RNA	fusion	finding	programs	for	the	detec;on	of	gene	fusions	
•  All	fusions	were	detected	with	their	expected	fusion	types/forms	

Table	3:	Evalua;on	of	gene	fusion	detec;on	and	sensi;vity	using	3	gene	fusion	detec;on	methods	
	
	
	
	
	
	

	
Figure	4:	Venn	diagram	showing	the	overlap	of	gene-fusion	detec;on	from	3	different	programs.	
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Abstract	
IntroducAon:	 As	 next-genera;on	 sequencing	 (NGS)	methodologies	 improve,	 so	 does	 the	 ability	 to	 characterize	 hematopoie;c	 and	
lymphoid	neoplasm	genomes.	This	promises	to	revolu;onize	oncology,	allowing	more	accurate	and	precise	classifica;on	of	pa;ents	
and	poten;ally	leading	to	novel	targeted	and	combina;on	therapies	with	improved	outcomes.	
Methods:	 The	MyHEME™	targeted-sequencing	panel	 is	 comprised	of	 two	 independent	bait	 sets	 that	 target	a	 combined	704	genes	
known	or	predicted	to	contribute	to	hematologic	cancers	(DNA	baits	for	571	genes	and	RNA	baits	for	361	genes;	228	genes	are	found	
in	common	between	the	two	bait	sets).	Libraries	were	constructed	using	1	μg	of	DNA	or	0.1	μg	of	RNA	and	sequenced	on	an	Illumina®	
plagorm.	 Sequenced	 reads	 are	 analyzed	 using	 proprietary	MyInforma;cs™	 sohware	 to	 iden;fy	 single-nucleo;de	 variants	 (SNVs),	
indels,	 and	 structural	 variants	 (SVs).	 Both	 the	MyHEME	 panel	 and	MyInforma;cs	 sohware	 were	 created	 under	 ISO	 13485-design	
control.	To	characterize	the	performance	metrics	of	the	MyHEME	panel,	we	used	the	NIST	human	reference	sample	NA12878	along	
with	combina;ons	of	hematologic	cancer	derived	cell	lines	with	known	pathogenic	variants	at	various	allelic	frequencies.	
Results:	Analy;cal	valida;on	of	the	MyHEME	panel	established	an	average	read	depth	of	1,175x	(with	a	median	read	depth	of	1,088x)	
for	the	DNA	targets	and	an	average	transcripts	per	million	(TPM)	of	2,256	(with	a	median	TPM	of	743)	for	the	RNA	targets.	For	the	
DNA	targets,	we	establish	sensi;vity	>95%	(99.8%	for	SNVs	at	a	2.5%	limit	of	detec;on	(LoD);	100%	for	coding	indels	at	a	5.0%	LoD)	
and	specificity	>95%	(95.5%	for	SNVs	at	a	2.5%	LoD;	97.7%	for	coding	indels	at	a	5.0%	LoD).	We	also	show	the	ability	to	cross-confirm	
results	 between	 the	 228	 genes	 common	 to	 both	 the	 DNA	 and	 RNA	 targets.	 Importantly,	 novel	 gene	 fusions,	 which	 are	 generally	
difficult	to	detect	and	validate,	were	cross-confirmed	when	observed	in	both	the	DNA	and	RNA	targets.	For	example,	we	iden;fied	a	
novel	 t(9;22)	 transloca;on	causing	a	NUP214-XKR3	 gene	 fusion	using	both	 the	DNA	and	RNA	 targets.	Addi;onally,	while	RNA	data	
provides	the	fused	exons	of	the	transcripts,	DNA	data	gives	the	precise	genomic	breakpoint	coordinates.	
Conclusion:	MyHEME	LDT	assay	service	is	an	extensive	panel	for	sensi;vely	and	specifically	iden;fying	SNV,	indel,	and	SV	muta;ons	in	
704	target	genes.	This	panel	can	comprehensively	characterize	muta;ons	in	mul;ple,	diverse	hematologic	cancer	samples,	including	
AML,	 ALL,	 Non-Hodgkin	 Lymphoma	 and	Mul;ple	Myeloma.	 By	 u;lizing	 a	 high	 depth	 of	 coverage,	MyHEME	 can	 accurately	 detect	
clones	present	down	to	5%	of	a	pa;ent’s	sample.	In	addi;on,	by	targe;ng	both	DNA	and	RNA,	MyHEME	contains	a	built	in	valida;on	
method	to	cross-confirm	novel	variants	of	interest.	

704	genes	are	targeted	by	MyHEME	baits	
•  Genes	were	chosen	due	to	published	associa;ons	with	hematologic	cancers	
•  DNA	baits:	Targets	the	coding	sequences	of	571	genes	
•  RNA	baits:	Targets	the	transcripts	of	371	genes	
•  228	genes	are	targeted	by	both	DNA	and	RNA	baits,	allowing	cross-valida;on	of	observed	variants	

Analysis	method	
•  1	μg	of	DNA	or	0.1	μg	of	RNA	is	used	as	input	before	hybridizing	to	the	MyHEME	baits	
•  Captured	targets	are	then	sequenced	on	the	Illumina®	plagorm	
•  Customized	bioinforma;cs	pipeline	iden;fies	and	characterizes	SNVs,	indels,	and	SVs	

Samples	used	to	evaluate	quality	metrics:	
•  NIST	human	reference	sample	NA12878	(aka	“Genome	in	a	Bonle”)	

•  High-confidence	variants	are	used	to	confirm	true	posi;ves	(TP)	and	iden;fy	false	nega;ves	(FN)	
•  Sanger-sequenced	regions	are	used	to	iden;fy	false	posi;ves	(FP)	and	confirm	true	nega;ves	(TN)	

•  Contrived	samples	containing	dilu;ons	of	6	cell	lines	at	different	allelic	frequencies	
•  Used	to	analyze	LoD,	reproducibility	and	linearity	of	variant	detec;on	

•  6	cell	lines	with	known	gene	fusions	used	to	evaluate	the	ability	to	detect	fusions	in	RNAseq	data	

Materials	&	Methods	

We	evaluated	DNA	 target	 coverage	 (Figure	 1)	 and	 sequencing	 depth	 (Figure	 2)	 across	 the	 coding	 sequences	
from	571	genes.	These	analyses	incorporate	data	from	16	samples,	including	8	runs	of	NA12878	and	2	runs	of	4	
contrived	samples	from	cell-line	dilu;ons.	
Figure	1:	MyHEME	DNA	Target	Coverage 	Figure	2:	MyHEME	DNA	Sequencing	Depth	

MyHEME	DNA	Results:	Coverage	and	Sequencing	Depth	

MyHEME	DNA	Results:	Sensi;vity	and	Specificity	

Using	sequence	data	obtained	from	1)	the	NIST	reference	NA12878,	2)	contrived	samples	containing	diluAons	of	6	AML	cell	lines,	and	
3)	6	cell	lines	with	known	gene	fusions,	the	following	was	established:	
•  Variant	SensiAvity	>	95%	
•  Sensi;vity	was	highest	for	SNVs	(99.8%)	
•  Variant	Specificity	of	95%	for	SNVs	and	>80%	for	indels	
•  Using	an	LoD	of	5%,	our	coding	specificity	for	both	SNVs	and	indels	is	>97%	

•  LoD	of	at	least	5%	allelic	frequency	for	>99%	of	the	coding	bases	of	targeted	genes	
•  In	addi;on,	as	much	as	98%	of	the	coding	bases	of	the	targeted	genes	should	have	an	LoD	of	at	least	2.5%	and	poten;ally	>70%	

of	the	coding	bases	should	have	an	LoD	of	1.0%	
•  Significant	linearity	for	detecAon	of	SNVs	and	indels,	including	pathogenic	mutaAons	such	as	FLT3/ITD	

•  Structural	variants	using	both	DNA	and	RNA	can	be	detected	

•  Transloca;ons	with	an	LoD	as	low	as	2.5%	can	be	detected	

•  Combining	3	gene	fusion	programs	results	in	a	very	high	sensi;vity	with	a	low	false-posi;ve	detec;on	rate	

We	demonstrated	that	MyHEME	is	a	highly	sensi;ve,	accurate	and	reproducible	assay	that	comprehensively	characterizes	muta;ons	
within	samples	from	a	variety	of	hematological	malignancies.		

MyHEME	DNA	Results:	Limit	of	Detec;on	and	Linearity	
To	es;mate	the	LoD	and	linearity	of	DNA	variant	detec;on	using	MyHEME,	contrived	samples	comprised	of	6	
AML	cell	lines	were	used.	Five	cell	lines	were	diluted	into	a	6th	cell	line	(background)	at	the	following	dilu;ons:	
5%,	7.5%,	10%,	and	20%.	Note,	for	heterozygous	variants,	the	allelic	frequency	is	half	of	the	dilu;on,	so	LoD	was	
tested	at	levels	as	low	as	2.5%.	
Figure	3:	Linearity	of	a)	4	heterozygous	SNVs,	b)	4	homozygous	SNVs	and,	c)	1	heterozygous	and	2	homozygous	
indels.	
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To	 evaluate	 MyHEMEs	 DNA	 variant	 detec;on	 sensi;vity	 and	 specificity,	 the	 NIST	 human	 reference	 sample	
NA12878	 was	 sequenced.	 The	 GIAB	 consor;um	 sequenced	 this	 “Genome	 in	 a	 Bonle”	 mul;ple	 ;mes	 on	
mul;ple	plagorms	to	generate	an	integrated	“gold-standard”	dataset	containing:	
• A	set	of	3,641,994	high-confidence	variants.	Of	these	variants,	there	are:	
•  656	high-confidence	coding	variants	(640	SNVs	and	16	indels)	within	MyHEME	targets	
•  2,171	high-confidence	non-coding	variants	(1,948	SNVs	and	223	indels)	within	MyHEME	targets	
•  High-confident	variants	were	used	as	gold-standard	true	posiAves	for	sensi;vity	analyses	

• High-confidence	regions	containing	2,565,300,578	bp	with	highly	accurate	genotype	calls:	
•  1,594,796	bp	and	2,202,265	bp	overlap	MyHEME	coding	and	non-coding	targets	(respec;vely)	
•  Non-variant	sites	were	used	as	gold-standard	true	negaAves	for	specificity	analyses		

Table	1:	Sensi;vity	and	Specificity	of	a)	coding	and	b)	non-coding	variants	in	8	NA12878	MyHEME	runs	at	VAF	
cutoffs	of	2.5%	and	5.0%	
	
	
	
	
	
	
	
Sensi;vity	is	calculated	as	Detected	True	Posi;ves	/	Gold-Standard	True	Posi;ves	(n	in	above	table)	
Specificity	is	calculated	as	Detected	True	Posi;ves	/	All	Detected	Variants	

• Using	a	SNV	cutoff	of	2.5%	and	an	indel	cutoff	of	5.0%,	the	following	was	observed:	
•  >95%	sensi;vity	for	both	coding	and	non-coding	SNVs	and	indels	
•  95%	specificity	for	SNVs	and	>80%	specificity	for	indels	

SNVs	 Indels	
Coding	(n=5,120)	 Non-Coding	(n=128)	 Coding	(n=15,584)	 Non-Coding	(n=1,784)	
2.5%	 5.0%	 2.5%	 5.0%	 2.5%	 5.0%	 2.5%	 5.0%	

Sensi;vity	 99.8%	 99.8%	 99.8%	 99.8%	 100%	 100%	 95.6%	 95.6%	

Specificity	 94.9%	 98.3%	 95.7%	 98.6%	 87.1%	 97.7%	 83.1%	 84.7%	

MyHEME	DNA	&	RNA	Results:	Transloca;ons	and	Gene	Fusions	

TranslocaAon	 Genes	 Detected	 False	NegaAves	
t(9;22)	 ABL1	–	BCR		 8	 0	
t(9;22)	 NUP214	–	XKR3	 8	 0	

Program	 Total	Fusions	 Known	Fusions	 SensiAvity	
A	 18	 6	 100%	
B	 18	 6	 100%	
C	 12	 6	 100%	

Combined	 9	 6	 100%	
2	of	3	 10	 6	 100%	

8	

1	8	

9	
1	 0	

0	

Note:	Of	 the	 4	 novel	 fusions	 using	 2	 of	 3	
programs,	3	are	reciprocal	gene	fusions	of	
one	 of	 the	 known	 fusions.	 The	 other	 is	 a	
t(9;22)(NUP214-XKR3)	 fusion	 observed	
with	 high	 confidence	 by	 all	 3	 programs,	
and	 confirmed	 by	 DNA	 transloca;on	
analysis.	

A	

B	 C	
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