& invivoscribe

Small Customizable Next-Generation Sequencing Based Target-Capture Panels in a Clinical Environment Can Detect Variant Mutations at Frequencies as Low as 0.5%

Lisa M. Chamberlain, Zhiyi Xie, Andrew R. Carson, Bradley Patay, Valerie McClain, Ogeen Kiya, Wenli Huang, Jeffrey E. Miller, and Tim Stenzel Invivoscribe Technologies, Inc, San Diego, CA

Introduction

In clinical trials, large scale target-capture panels provide critical information for the selection of target biomarkers. However, as biomarker targets are further characterized large target-capture panels can elicit a glut of excess information, complicating analyses. Alternatively, once biomarker targets have been identified, the use of smaller, focused next-generation sequencing (NGS) based target-capture assays facilitate specific variant detection by sequencing genomic regions of interest with greater breadth than classic PCR-based assays. Moreover, laboratory methods for larger target-capture panels require extensive modification and optimization when applied to smaller scale target-capture panels to maintain optimal analytic quality. Here, we utilize smaller targetcapture panels (~10kb) focusing on a few genes, allowing for high-multiplexing of samples on NGS platforms reducing cost per sample and decreasing processing time.

Here, we demonstrate excellent linearity, a Limit of Detection (LoD) of 0.5%, a location specific Limit of Blank (LoB), and good precision and reproducibility from small target-capture assays.

Results: Precision and Reproducibility

Libraries were generated by 2 operators on 2 days and were run on 2 different instruments. In total, 24 replicates each of 5%, 2%, 1%, and 0.5% (DNA:DNA) contrived samples were run.

For reproducibility, the acceptance criterion was set so no more than two 1% contrived samples were undetected. All contrived samples $\geq 1\%$ DNA:DNA test positive for all 4 expected mutations, demonstrating excellent reproducibility of this assay.

Precision analysis observed %CV (CV/ \bar{x}) of variant allele frequency (VAF), with the goal of this metric to be $\leq 30\%$. Data is presented in **Table 2**, and all expected variants pass this criterion.

Day-to-day, operator-to-operator, and instrument-to-instrument variation analysis is presented in **Figure 2**. Overall there is very little variance, most of which is from variations in DNA:DNA% and random (residual) sources.

Materials and Methods

Library Preparation: Whole-genome libraries were prepared using the KAPA Hyper Prep kit (KAPA Biosystems[®]).

Library Hybridization, Capture, and Washing: Whole-genome libraries were hybridized to probe sets (Integrated DNA Technologies[®], Coralville, IA, USA) at 65°C overnight. Buffers from the SeqCap EZ Hybridization and Wash Kit (Roche[®], Pleasanton, CA) were used for hybridization and washing.

Contrived Samples: 5 cell lines were used to generate contrived mixes of DNA with 4 expected variants against background DNA. Contrived mixes containing 25%, 10%, 5%, 2%, 1%, and 0.5% variant DNA were diluted in background DNA (DNA:DNA). Prior to dilution, input cell lines had expected mutations with variant allele frequencies (VAF) of 1 (Insertion 1), 0.5 (SNV 2), 0.5 (SNV 3), and 0.5 (SNV 4).

LoD, LoB, and Linearity: 3 replicates of 25% and 10% DNA:DNA dilutions, 4 replicates of 5%, 2%, 1%, and 0.5% DNA:DNA dilutions, and 2 replicates of background DNA were sequenced. **Precision and Reproducibility:** 24 replicates of 5%, 2%, 1%, and 0.5% DNA:DNA dilution contrived samples were run through the 3-gene assay by 2 operators on 2 different days on 2 different

Results: LoD, LoB, and Linearity

instruments.

To establish the LoD and linearity of our small target-capture panel assays, contrived samples were assayed using a target-capture panel covering 3 genes and 4 expected variants.

Linearity data is graphed in Figure 1. Each expected variant is graphed separately; and displays data from DNA:DNA% with 3 replicates for 25% and 10% and 4 replicates for 5%, 2%, 1%, and 0.5%. Equations for line of fit and R² values are listed on each graph. R² values are significant, ranging from 0.994 to 0.998.

		% CV of detected VAF (≤30%)						
(DNA:DNA%)	Expected VAF (%)	Expected Insertion 1	Expected SNV 2	Expected SNV 4	Expected SNV 3			
F0/	5	10.18						
5%	2.5		13.52	10.19	12.44			
20/	2	8.36						
2%	1		12.31	13.55	9.56			
10/	1	21.97						
1%	0.5		18.35	16.90	22.13			
0.5%	0.5	28.48						
0.5%	0.25		16.28	20.46	21.93			

Table 2: %CV of VAFs for all expected variants are below the cutoff of 30% for precision validation.

Figure 2: Variance analysis of P/R data indicates very little variance stemming from random sources.

Variance Components							
Component	Var Component	% of Total	20 40 60 80	Sqrt(Var Comp)			
Instrument	0.00074577	0.1335		0.02731			
Operator	0.00061351	0.1098		0.02477			
Day	0.00127621	0.2285		0.03572			
DNA:DNA%	0.52152887	93.4		0.72217			
Within	0.03440848	6.2		0.18550			
Total	0 55857285	100.0		0 74738			

LoD was established at 0.5% (Table 1). Of particular interest, we note that Expected SNV 4 is reliably at detected at a lower VAF of 0.25% (due to variable representation in the contrived sample).

No expected mutations were detected in 100% background DNA samples (N=2), LoB was established for each expected variant as the background variant rate + 5*stdev.

Table 1: LoD is established at 0.5%, and all expected mutations are observed at that VAF.

	Expected Insert 1		Expected SNV 2		Expected SNV 3			Expected SNV 4				
N	Expected VAF	VAF Range (%)	Tests positive for mutation (%)	Expected VAF	VAF Range (%)	Tests positive for mutation (%)	Expected VAF	VAF Range (%)	Tests positive for mutation (%)	Expected VAF	VAF Range (%)	Tests positive for mutation (%)
3	25%	25-26.3	100%	12.5%	11.6-13	100%	12.5%	10.1-10.9	100%	12.5%	8.8-10	100%
3	10%	10-11.1	100%	5.0%	4.6-4.9	100%	5.0%	4.1-4.5	100%	5.0%	3.47-3.52	100%
28	5%	4.7-5.6	100%	2.5%	2.4-2.6	100%	2.5%	2-2.7	100%	2.5%	1.8-2.1	100%
28	2%	1.8-2.2	100%	1.0%	1.1-1.2	100%	1.0%	0.7-1	100%	1.0%	0.6-0.9	100%
28	1%	0.9-1.2	100%	0.5%	0.5-0.7	100%	0.5%	0.4-0.6	100%	0.5%	0.3-0.4	100%
28	0.5%	0.5-0.8	100%	0.25%	0.3-0.4	67.9%	0.25%	0.2-0.3	100%	0.25%	0.2-0.4	64%

Conclusions

Small hybridization panels are cost effective in detecting low-frequency variants from smaller subsets of genes while using far less DNA than individual PCR-based biomarker assays. Small hybridization assays focus on the most pertinent genes for a targeted therapy and have the potential to greatly assist in understanding the molecular backgrounds of responders, super-responders, and non-responders, information that can help improve patient outcomes. Developing NGS target-capture panels with bioinformatics in compliance with ISO 13485 and QSR design control requirements makes these assays suitable for pre-market submissions to worldwide regulatory authorities.

AMP Global, April 3–5 2017, Berlin, Germany

