

Memorial Sloan Kettering Cancer Center

Minimal Residual Disease Detection of Lymphoid and Plasma Cell Neoplasms Using a Next-Generation Sequencing (NGS)-Based Assay Caleb Ho, MD; Juan Gomez-Gelvez, MD; Mustafa H Syed, MS; Kseniya Petrova-Drus, MD, PhD; Ahmet Zehir, PhD; Wayne Yu, BS;

Tessara Baldi, BS; Marc Ladanyi, MD; Ahmet Dogan, MD, PhD; Jinjuan Yao, MD, PhD; Khedoudja Nafa, PharmD, PhD; Maria E. Arcila, MD Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY

Introduction

Lymphoid and plasma cell neoplasms are characterized by clonally-restricted Tcell receptor (TCR) or immunoglobulin (Ig) rearrangements. Across clinical laboratories, this is generally demonstrated with standardized multiplex polymerase chain reaction (PCR) assays, in which V-J or D-J products are separated by fragment sizes on capillary electrophoresis (CE). However, this approach has relatively low sensitivity and does not provide the specific clonal sequence information required for tracking a clone at low level or in minimal residual disease (MRD) setting. In this study, we assessed the performance of a NGS-based assay, LymphoTrack[®](LT) (Invivoscribe, San Diego, CA), for detection of low level and MRD among various lymphoid and plasma cell neoplasms in comparison to CE and flow cytometry (FC) assays.

Material and Methods

DNA was extracted from bone marrow, blood, and formalin-fixed paraffinembedded tissue from 48 patients with diagnostic and post-therapy (PT) samples. For clonal Ig rearrangement, PCR primers flanking the *IGH* conserved framework region 1 (FR1) in VH and conserved JH region were used. For clonal TCR rearrangement, primers flanking the TRG conserved Vy and Jy regions were used. The amplified products were sequenced on the Illumina MiSeq platform, and analyzed with the proprietary LymphoTrack[®] analysis software, which provided the quantitation and V-J gene family usages of all unique sequences. With the aid of an in-house developed software, MSK-LymphoClone, the patient-specific diagnostic clonal sequences were used to detect residual disease involvement in subsequent samples, and compared to concurrent CE and 10-color FC results available at MSKCC.

Results								
	Diagnostic Samples	Post-Therapy Samples						
Acute Lymphoblastic Leukemias	11	14	Table 1: Lymphoid and Plasm Cell Neoplasm cases used for					
Mature B-cell Neoplasm	16	20	1 –	Disease Detection by				
Mature T-cell Neoplasm	9	13						
Plasma Cell Neoplasm	12	15						
Total	48	62						
# of Total Sequencing % of Reads supporting								

 Table 2: Summary of

 Total Sequencing Reads and Percentage of Reads supporting Residual Disease

	# of Total Sequencing Reads	% of Reads supporting Residual Disease
Lowest	50,634	0.0020
Highest	7,026,781	76.2467
Median	1,106,490	1.0119

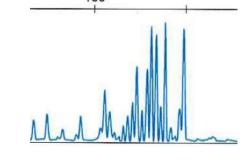
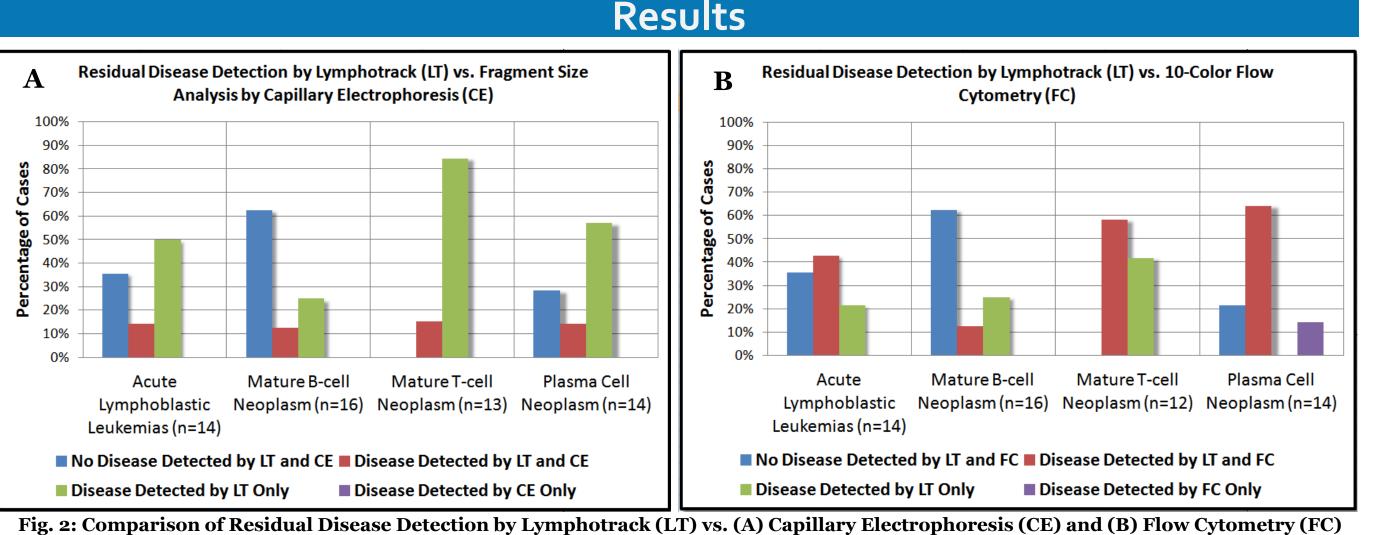



Fig. 1: Residual Disease Detection in a Patient with Relapsed T-Lymphoblastic Leukemia/Lymphoma, using TRG Primers on LymphoTrack[®]. The patient shows evidence of subsequent relapse by PET scan, and is currently on palliative therapy.

- clonal sequence detected by LT.
 - > In one sample, total sequencing reads was suboptimal for MRD detection (65,960 total reads).
 - > In the other sample, two subsequent samples from the same patient showed no evidence of disease by all detection methods.
- In 12 PT samples from 10 patients, LT detected residual disease, while neither FC nor CE detected disease. \geq 2/10 patients showed subsequent overt evidence of persistent/recurrent diseases, with median follow-up time of 3 months.
- In 18 PT samples from 17 patients, there is no evidence of residual disease by all detection methods. > 16/17 patients showed no subsequent evidence of disease, with median follow-up time of 2.7 months.

B. 1 Month Post 2nd Allogeneic Stem Cell Transplant

Total count	435,837						DS2 not found
Rank	Sequence	Length	Raw count 🔽	V-gene	J-gene	% total reads	Column1 🔽
359	GGAATCAGCCCA(138	81	Vg4	 JgP1	0.0185849	
360	GGAGTCAGTCCA	151	81	Vg2	JgP2	0.0185849	
361	TGGGTAAGACAAC	148	81	Vg10	JgP1	0.0185849	DS1
362	TGGGTAAGACAAC	156	81	Vg10	Jg1/2	0.0185849	
363	GGATTCAGTCCAG	147	81	Vg2	JgP2	0.0185849	
364	GGAGTCAGTCCA	142	81	Vg2	Jg1/2	0.0185849	

Flow: No Abnormal T cells: Morphologic Remission

• In 2/14 Plasma Cell Neoplasm PT samples, FC detected suspicious atypical plasma cells (0.0007% and 0.0028% of total WBC), but no

nths Post 2 nd .	Allogen	eic Stem Co	ell Transp	lant						
914,912						DS1 not fou	ınd			
914,912 Sequence	Length 🔽	Raw count 🔽	V-gene 🔽	J-gene	▼ % total reads		ınd			
Sequence	Length 145	Raw count 215			 % total reads 0.0234995 		Ind			
			Vg2	J-gene Jg1/2 JqP2			IND			
Sequence GGAGTCAGTCCA	145	215		Jg1/2	0.0234995		IND			
Sequence GGAGTCAGTCCA(GGAGTCAGTCCA(145 150	215 215	Vg2 Vg2	Jg1/2 JgP2	0.0234995 0.0234995	Column1 🔽	ınd			
Sequence GGAGTCAGTCCA(GGAGTCAGTCCA(AGAATCAGTAGAC	145 150 144	215 215 214	Vg2 Vg2 Vg3	Jg1/2 JgP2 Jg1/2	0.0234995 0.0234995 0.0233902	Column1 🔽	Ind			

Flow: 0.0026% Abnormal T-Lymphoblasts; 1% Blasts on Aspirate Smears

D. 8 Months Post 2nd Allogeneic Stem Cell Transplant

464 465

466 467

688,110						
Sequence 🗾	Length 🔽	📃 Raw count 💌	V-gene 🔽	J-gene 🔽	🐘 % total reads 💌	Column1
GGAGTCAGTCCA(155	357	Vg2	JgP2	0.0518812	
GGACTCAGTCCA (148	354	Vg3	Jg1/2	0.0514453	
TGGGTAAGACAAC	148	351	Vg10	JgP1	0.0510093	DS1
CGGCATTCCGTC/	145	347	Vg9	JgP	0.0504280	
GGAGTCAGTCCA(147	344	Vg2	JgP1	0.0499920	
TGGGTAAGACAAC	138	93	Vg10	JgP1	0.0135153	
GGAGTCAGTCCA(147	93	Vg2	JgP2	0.0135153	
AGAATCAGTAGAC	144	92	Vg3	Jg1/2	0.0133700	DS2
GGACTCAGTCCA	148	92	Vg3	Jg1/2	0.0133700	
GGAGTCAGTCCA(150	92	Vg2	JgP2	0.0133700	
GGAATCAGCCCA(135	92	Vg4	none	0.0133700	

Flow: No Abnormal T cells; Morphologic Remission

Conclusion

Compared to capillary electrophoresis and flow cytometry, LymphoTrack[®] provides comparable or better MRD detection sensitivity of lymphoid neoplasms, and with increased diagnostic certainty by utilizing patient-specific clonal sequences for MRD detection.

Acknowledgements

The authors would like to thank the Diagnostic Molecular Pathology Laboratory members and Invivoscribe for their technical support.

References

Emerson RO, et al. Defining the alloreactive T cell repertoire using high-throughput sequencing of mixed lymphocyte reaction culture. *PLoS One* 2014;9(11):e111943

2. Logan AC, Et al. Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. *Biol Blood Marrow Transplant* 2014;20:1307-13.

Miller, J.E. (2013). Principle of Immunoglobulin and T Cell Receptor Gene Rearrangement. In Cheng L, Zhang D, Eble J.N. (Eds), Molecular Genetic Pathology (2nd Ed). New York, USA: Springer Science & Business Media. Schumacher JA, et al. A comparison of deep sequencing of TCRG rearrangements vs traditional capillary

electrophoresis for assessment of clonality in T-Cell lymphoproliferative disorders. Am J Clin Pathol. 2014;141(3):348-59

Wu D, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH. Clin Cancer Res. 2014;20(17):4540-8

AMP Annual Meeting, November 10-12 2016, Charlotte, NC